Design an intelligent controller for full vehicle nonlinear active suspension systems

نویسندگان

  • A. A. Aldair
  • W. J. Wang
چکیده

The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which arises from road roughness and to increase the ride handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as much control objectives, as possible. Therefore, this paper deals with an artificial intelligence Neuro-Fuzzy (NF) technique to design a robust controller to meet the control objectives. The advantage of this controller is that it can handle the nonlinearities faster than other conventional controllers. The approach of the proposed controller is to minimize the vibrations on each corner of vehicle by supplying control forces to suspension system when travelling on rough road. The other purpose for using the NF controller for vehicle model is to reduce the body inclinations that are made during intensive manoeuvres including braking and cornering. A full vehicle nonlinear active suspension system is introduced and tested. The robustness of the proposed controller is being assessed by comparing with an optimal Fractional Order PIλDμ (FOPID) controller. The results show that the intelligent NF controller has improved the dynamic response measured by decreasing the cost function. INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 4, NO. 2, JUNE 2011

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Controller Based Full Vehicle Nonlinear Active Suspension Systems with Hydraulic Actuators

This paper is concerned with full vehicle nonlinear active suspension systems, in which each suspension unit consists of three components: a nonlinear spring, a nonlinear damper and a nonlinear hydraulic actuator. An artificial intelligence Neural Control technique has been presented in this paper to design a robust controller for full vehicle nonlinear active suspension systems. The advantage ...

متن کامل

Neural Controller Design for Suspension Systems

The main problem of vehicle vibration comes from road roughness. An active suspension systempossesses the ability to reduce acceleration of sprung mass continuously as well as to minimizesuspension deflection, which results in improvement of tire grip with the road surface. Thus, braketraction control and vehicle maneuverability can be improved consider ably .This study developeda new active su...

متن کامل

Design of a Constrained Nonlinear Controller using Firefly Algorithm for Active Suspension System

Active vehicle suspension system is designed to increase the ride comfort and road holding of vehicles. Due to limitations in the external force produced by actuator, the design problem encounters the constraint on the control input. In this paper, a novel nonlinear controller with the input constraint is designed for the active suspension system. In the proposed method, at first, a constrained...

متن کامل

Design of Fractional Order Controller Based on Evolutionary Algorithm for a Full Vehicle Nonlinear Active Suspension Systems

An optimal Fractional Order PI λ D μ (FOPID) controller is designed for a full vehicle nonlinear active suspension system. The optimal values of FOPID controller parameters for minimizing the cost function are tuned using an Evolutionary Algorithm (EA), which offers an optimal solution to a multidimensional rough objective function. The fitness parameters of FOPID controller (proportional const...

متن کامل

Fpga Based Adaptive Neuro Fuzzy Inference Controller for Full Vehicle Nonlinear Active Suspension Systems

A Field Programmable Gate Array (FPGA) is proposed to build an Adaptive Neuro Fuzzy Inference System (ANFIS) for controlling a full vehicle nonlinear active suspension system. A Very High speed integrated circuit Hardware Description Language (VHDL) has been used to implement the proposed controller. An optimal Fraction Order PI λ D μ (FOPID) controller is designed for a full vehicle nonlinear ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011